Rare-Variant Kernel Machine Test for Longitudinal Data from Population and Family Samples.
نویسندگان
چکیده
OBJECTIVE The kernel machine (KM) test reportedly performs well in the set-based association test of rare variants. Many studies have been conducted to measure phenotypes at multiple time points, but the standard KM methodology has only been available for phenotypes at a single time point. In addition, family-based designs have been widely used in genetic association studies; therefore, the data analysis method used must appropriately handle familial relatedness. A rare-variant test does not currently exist for longitudinal data from family samples. Therefore, in this paper, we aim to introduce an association test for rare variants, which includes multiple longitudinal phenotype measurements for either population or family samples. METHODS This approach uses KM regression based on the linear mixed model framework and is applicable to longitudinal data from either population (L-KM) or family samples (LF-KM). RESULTS In our population-based simulation studies, L-KM has good control of Type I error rate and increased power in all the scenarios we considered compared with other competing methods. Conversely, in the family-based simulation studies, we found an inflated Type I error rate when L-KM was applied directly to the family samples, whereas LF-KM retained the desired Type I error rate and had the best power performance overall. Finally, we illustrate the utility of our proposed LF-KM approach by analyzing data from an association study between rare variants and blood pressure from the Genetic Analysis Workshop 18 (GAW18). CONCLUSION We propose a method for rare-variant association testing in population and family samples using phenotypes measured at multiple time points for each subject. The proposed method has the best power performance compared to competing approaches in our simulation study.
منابع مشابه
Rare variant association test in family-based sequencing studies
The objective of this article is to introduce valid and robust methods for the analysis of rare variants for family-based exome chips, whole-exome sequencing or whole-genome sequencing data. Family-based designs provide unique opportunities to detect genetic variants that complement studies of unrelated individuals. Currently, limited methods and software tools have been developed to assist fam...
متن کاملComparing family-based rare variant association tests for dichotomous phenotypes
BACKGROUND It has been repeatedly stressed that family-based samples suffer less from genetic heterogeneity and that association analyses with family-based samples are expected to be powerful for detecting susceptibility loci for rare disease. Various approaches for rare-variant analysis with family-based samples have been proposed. METHODS In this report, performances of the existing methods...
متن کاملA generalized least-squares framework for rare-variant analysis in family data
Rare variants may, in part, explain some of the hereditability missing in current genome-wide association studies. Many gene-based rare-variant analysis approaches proposed in recent years are aimed at population-based samples, although analysis strategies for family-based samples are clearly warranted since the family-based design has the potential to enhance our ability to enrich for rare cau...
متن کاملTwo-step Smoothing Estimation of the Time-variant Parameter with Application to Temperature Data
‎In this article‎, ‎we develop two nonparametric smoothing estimators for parameter of a time-variant parametric model‎. ‎This parameter can be from any parametric family or from any parametric or semi-parametric regression model‎. ‎Estimation is based on a two-step procedure‎, ‎in which we first get the raw estimate of the parameter at a set of disjoint time...
متن کاملSequence Kernel Association Test, gene-environment interaction test, and meta-analysis for family samples with repeated measurements or multiple traits
Genetic loci identified by single variant association tests account for only a small proportion of the heritability for most complex traits and diseases. Part of the unexplained heritability may be due to rare variants and their interactions with environmental factors. Different strategies have been taken to increase the power to detect genetic associations, such as increasing the sample size b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human heredity
دوره 80 3 شماره
صفحات -
تاریخ انتشار 2015